Table 1. Naphthylaminesulphonic acids

	а	b	с	β	<i>Q</i> (obs)	ρ(calc)	Ζ	Space group
1-Naphthylamine-2-sulphonic acid	17·22 Å	10·91 Å	10∙07 Å	-	1.552	1.567	8	$P2_1ca$
1-Naphthylamine-3-sulphonic acid	12.78	11.70	6.82		1.474	1.451	4	$Pbn2_1$
1-Naphthylamine-4-sulphonic acid (naphthionic acid)	16.54	15.20	7.84	—	1.498	1.506	8	P2na
1-Naphthylamine-5-sulphonic acid monohydrate	16.77	7.84	8.05	96°	1.518	1.521	4	$P2_1/a$
1-Naphthylamine-6-sulphonic acid	16.25	11.12	10.57	—	1.560	1.552	8	Pbca
1-Naphthylamine-7-sulphonic acid monohydrate	16.44	8.91	7.14		1.514	1.533	4	$Pc2_1n$
1-Naphthylamine-8-sulphonic acid	14.04	10.76	6.93	—	1.444	1.474	4	P2an

Table 2. Salts of 1-naphthylamine-4-sulphonic acid

	а	b	с	β	₽(obs)	$\varrho(\text{calc})$	Ζ	Space group
Ammonium naphthionate monohydrate	20∙00 Å	10·79 Å	10·83 Å	95∙0°	1.467	1.467	8	$P2_1/n$
Lithium naphthionate trihydrate	12.80	9.81	12.14	122.14	1.48	1.46	4	$P2_1/n$
Sodium naphthionate tetrahydrate	11.61	12.05	10.04	98.8	1.513	1.516	4	$P2_1/c$
Potassium naphthionate	34.40	8.60	7.06		1.68	1.668	8	$P2_1cn$
Thallium naphthionate	17.89	12.51	9.52		2.70	2.66	8	Pbca
Calcium naphthionate octahydrate	23.52	11.93	9.73	95.0	1.530	1.534	4	$P2_1/n$
Magnesium naphthionate decahydrate	14.08	8.30	12.86	103.0	1.47	1.470	2	$P2_1/a$
Zinc naphthionate enneahydrate	45.22	14.33	8∙58		1.60	1.604	8	$P2_1ab$
Cobalt naphthionate enneahydrate	45.60	14.35	8.62		1.58	1.565	8	$P2_1ab$
Nickel naphthionate enneahydrate	45.60	14.35	8.62		1.58	1.565	8	$P2_1ab$

Table 3. Miscellaneous salts of naphthylaminesulphonic acids

	а	b	с	β	₽(obs)	$\varrho(calc)$	\boldsymbol{Z}	Space group
Sodium 2-naphthylamine-6-sulphonate dihydrate	26·71 Å	11·20 Å	7·91 Å		1.588	1.579	8	Pn2b
Sodium 1-naphthylamine-5-sulphonate	18.01	8.56	6.99	—		1.51	4	P212121
Potassium 1-naphthylamine-5-sulphonate	18.09	8.63	7.51	—	-	1.48	4	$P2_{1}2_{1}2_{1}$
Sodium naphthionate/bisulphite addition compound	14.63	9.20	10.25	95∙5°	1.72	1.715	4	$P2_1/n$
Sodium naphthionate/bisulphite dimeric addition								
compound	21.23		6.00	—	1.75	1.747	4	14
Zinc 1-naphthol-4-sulphonate octahydrate	23.00	11.24	10.64	-	1.584	1.583	4	$P2_{1}2_{1}n$

No further crystallographic work has been done or is planned to be done on any of the acids listed in Table 1.

A number of salts of 1-naphthylamine-4-sulphonic acid were also investigated. These were readily soluble in water, and well-formed crystals of quite large size could easily be grown. The unit cells and space groups of these are listed in Table 2. It is remarkable that so few of these salts are isomorphous. The zinc, cobalt and nickel salts are obviously isomorphous and isostructural, and the calcium salt appears to be related to the sodium salt by doubling a, but otherwise there seem to be no resemblances between members of the series.

The structure of the sodium salt has been fully determined by three-dimensional X-ray analysis (Brown & Corbridge, 1966); some preliminary unpublished work has been done on the [b] projection of the calcium salt, and we have taken some photographs of the potassium salt for intensity measurements, but otherwise no further work on these compounds is contemplated. The potassium salt is interesting in that the crystals can easily be bent reversibly without fracture, and cleavage readily occurs parallel to (100).

The cell dimensions and space groups of a few related compounds were also determined and these are listed in Table 3. The preparation and exact formulae of the sodium naphthionate/sodium bisulphite addition compounds are described in a paper on the mechanism of the Bucherer reaction (Cowdrey, 1946).

References

BROWN, C. J. & CORBRIDGE, D. E. C. (1966). To be published.

COWDREY, W. A. (1946). J. Chem. Soc. p. 1041.

Acta Cryst. (1965). 20, 699

Crystal data for ytterbium orthoferrite YbFeO₃. By F.W. HARRISON, Mullard Research Laboratories, Redhill, Surrey,

England

(Received 3 November 1965)

The recent publication by Eibschütz (1965) on the lattice constants of polycrystalline samples of the orthoferrites of the heavier rare earths prompts a confirmatory report on powder data from a sample of YbFeO₃ prepared originally in single-crystal form. The data were obtained in these laboratories in 1960 from a crystal approximately a milli-

metre cube which was a by-product in the preparation by J.L. Page of crystals of ytterbium iron garnet from a lead-oxide solution.

The powder photograph was taken with a Philips No. 33524 Straumanis camera of diameter 114.6 mm and filtered iron radiation. The lower-angle lines were indexed on the

basis of an orthorhombic cell of space group Pbnm (D_{2h}^{16}) by comparison with the data of Geller & Wood (1956) on the lighter rare-earth orthoferrites. Geller (1956) considers space groups Pbn (C_{2v}°) unlikely on structural grounds. The lines 132, 024, and 204 which were unequivocally indexed were used to determine lattice constants $a=5\cdot22(8)$, b= $5\cdot54(6)$, $c=7\cdot56(0)$ Å which resulted in the indexing of all the lines. Further refinement of the lattice constants by the use of higher-order reflexions was not attempted in view of the multiple indices possible for these reflexions. Observed and calculated d spacings are listed in Table 1, and closely follow the data of Eibschütz with the exception of one or two differences in the indexing of high-angle lines.

	Table 1. Pa	owder data	
hkl	dobs	d_{calc}	I*
110	3.784	3.804	S
111	3.396	3.398	ms
020	2.773	2.773	m
112	2.677	2.681	vs
200	2.605	2.614	S
211	2.249	2.257	w
022	2.239	2.236	w
202	2.154	2.150	m
113	2 ·101	2 ·101	m
122	2.048	2.056	vw
212	2.001	2.005	vvw
220	1.901	1.905	m
004	1.890	1.890	m
023	1.863	1.865	mw
221	1.842	1.845	m
213	1.717	1.724	vvw
222	1.700	[1·699	ms
131	}	1.698	
301	1.696	1.698	w
310	1.658	1.663	vw
311	1.623	1.624	vw
132	1.583	1.583	mw
024	1.562	1.562	mw
204	1.532	1.532	т
312	1.519	<pre>{ 1.522</pre>	s
223		1.518	
214	1.469	∫ 1·476	vvw
320	1.452	1.475	
105	1.452	1.453	vvw
133 303	1.435	{ 1.434 } 1.433	m
115	1.406	1.405	vw
313 040	1.386	{ 1.388 } 1.387	vvw
322 041	1.368	1.375	w
224 140	1.341	{ 1.341 1·340	m
140	1.322	1.320	vw

hkl	$d_{\rm obs}$	d_{calc}	<i>I</i> *
400	1.307	1.307	w
215	1.275	∫ 1.274	vw
323		{ 1·273	
142	1.264	1.263	vvw
331 402	1·252 1·237	1·251 1·235	m vvw
402 043	1.237	1.235	vw
241	1.210	1.209	w
116	1.198	1.196	m
225		[1.184	
143	1.183	{ 1.183	mw
420		1.182	
421	1.169	1.169	mw
026		1.147	
135	1.144	{ 1.142	т
305		1·142 1·136	
413 206	1.134	1.136	m
333	1.1.34	1.133	m
126		1.120	
315	1.119	1.119	w
044	1 117	1.118	
243	1.104	1.102	m
340	1.088	∫ 1.085	
150	1.099	{ 1.085 1.085 1.075	w
404		1.075	
151	1.074	{ 1.074	ms
341	1 0 7 0	L 1.074	
423	1.072	1.070	w
431 325		(1·057 1·056	
414	1.055	1.055	vvw
334		1.053	
152		1.043	
342	1.042	1.043	vw
117	1.040	`1·039	vvw
240		∫ 1·0 2 8	
510	1.029	{ 1.027	w
432		L 1.027	
045	1.024	1.022	m
251 316	1·008 1·005	1·012 1·004	W
145		1.004 1.003	ms
424	1.003	,	m
153		0.997	
343	0.996	0.997	ms
252	0.004	0.986	
433	0.984	} 1.002 } 0.997 } 0.997 } 0.986 } 0.983	5
		,	

* s strong, m medium, w weak, v very

References

EIBSCHÜTZ, M. (1965). Acta Cryst. **19**, 337. GELLER, S. (1956). J. Chem. Phys. **24**, 1236. GELLER, S. & WOOD, E. A. (1956). Acta Cryst. **9**, 563.